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Abstract

No trade theorems examine conditions under which agents cannot agree to disagree
on the value of a security which pays according to some state of nature, thus preventing
any mutual agreement to trade. A large literature has examined conditions which imply
no trade, such as relaxing the common prior and common knowledge assumptions,
as well as allowing for agents who are boundedly rational or ambiguity averse. We
contribute to this literature by examining conditions on the private information of
agents that reveals, or verifies, the true value of the security. We argue that these
conditions can offer insights in three different settings: insider trading, the connection
of low liquidity in markets with no trade, and trading using public blockchains and
oracles.

JEL Classification Numbers: D82, D83, D84, G14, G41.

Keywords: No trade, Blockchain, oracles, agreeing to disagree, information aggregation.

1 Introduction

Contrary to common belief, asymmetric information by itself is insufficient to account for
the high trading volumes observed in financial markets. Aumann (1976) first showed that if
agents share a common prior, then it cannot be common knowledge that they disagree on the
probability they assign to an event. Milgrom and Stokey (1982) use this result to show that
if an allocation is ex ante Pareto efficient, then new asymmetric information will not lead to
trade if agents are risk averse and hold concordant beliefs. There is now a large literature
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examining conditions that generate no trade, such as relaxing the common prior or common
knowledge assumptions, or having agents who are boundedly rational or ambiguity averse.

The current paper contributes to this literature by examining a different set of conditions
that lead to no trade, specifically examining how agents’ private information can reveal or
verify the true value of the security being traded. To provide an example, suppose that it is
common knowledge that agent i always knows the true state and therefore the true value of
the traded security. Then, no other agent would be willing to accept a buy or a sell order
and there would be no trade, irrespective of whether the common prior assumption holds.
The reason is that it cannot be common knowledge that we disagree on the value of the
security, when it is common knowledge that agent i knows its value. Hence, accepting a
trade ‘must’ be wrong if you are not agent i. Is it possible to further weaken this condition
regarding the verifiability of the security’s value while still implying no trade? For example,
we could require that the conjunction of everyone’s knowledge verifies the true value of the
security. Alternatively, what if there is an agent who always knows whether the value of the
security is above or below a certain threshold? Are these conditions necessary or sufficient
to preclude trade? To motivate these questions, we provide three examples.

The first is insider trading. The UK Criminal Justice Act 1993 states in Section 52 that
‘An individual who has information as an insider is guilty of insider dealing if [...] he deals
in securities that are price-affected securities in relation to the information’. This clause
can be interpreted to mean that insider trading occurs when the insider possesses private
information significant enough to affect the price—or underlying value—of the security. Put
differently, the insider knows whether the value of the security lies above or below a certain
threshold.

Suppose that agents bet on the financial performance of a company, by trading a deriva-
tive on the price of its share. If an employee has insider information which always reveals
the true value of the company, it is straightforward that she should not be allowed to trade.
The reason is not that she can make huge profits by ‘taking advantage’ of other agents; it is
because, if agents are rational, they will understand that this possibility exists and there will
be no trade. A no trade result is detrimental in this case because the price of the derivative
may not be sufficiently close to its true value, hence the market would fail in aggregating in-
formation. However, what if the employee’s knowledge is not enough to verify the true value
of the company, but only whether it is above a certain threshold? By understanding the
conditions on verifiability that result in no trade, we can determine under which conditions
we should allow insiders to participate in a financial market.

The second example links low liquidity with no trade. In 1998, the Long-Term Capital
Management (LTCM) hedge fund was facing collapse due to the Russian debt default. The
resulting fire sales and the costly disruptions for the world financial markets led the Federal
Reserve Bank of New York to hold meetings to recapitalise LTCM. Cai (2003) documents how
market makers in the bonds futures market made huge profits using privileged information
on customer order flow. What happens to trading if it becomes common knowledge that
market insiders know which assets are distressed and therefore have a low value? If this
leads to a no trade result, then the liquidity of the market will dry up, exacerbating the
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price impact of the insiders and the distressed sellers. Cai (2003) shows, in fact, that market
liquidity was very low during this episode.1

The third example is trading on the blockchain. A public blockchain enables a decen-
tralised trading environment, where completing a transaction does not require a third party
which custodies the agents’ assets, verifies their ownership, or executes the transaction. All
transactions are public and trades are executed algorithmically using smart contracts, when
pre-specified events occur. For example, paying an option on a real-world asset requires the
reporting of its value within the blockchain, so that the smart contract can be executed. In
practice, the verification and reporting of real-world events to the blockchain is performed
by oracles.2 However, because users of the blockchain are anonymous, nothing stops oracles
from participating in the trade, especially when they know it is going to be favourable for
them.3 Will this ‘insider trading’ make trading on the blockchain inherently undesirable?

We examine conditions on the verifiability of securities (that is, revealing their true value)
using three different environments. In all settings, there are finitely many states and agents,
equipped with asymmetric information and different priors. Security X pays a dividend
according to the state of nature. Trades are agreed in the interim stage, after agents receive
their private information but before the true state is revealed. The first environment is
static and follows Aumann (1976). We say that there is common knowledge trade at some
state if the agents’ expected values of the security are common knowledge but different.
The second environment is dynamic with infinitely many periods, following Geanakoplos
and Polemarchakis (1982). In each period, one agent announces (truthfully) his expected
value of the security. All other agents update their information based on the announcement
and form a new expected value. In the next period, another agent announces his expected
value, and so on. We say that agents cannot disagree forever if they eventually agree on the
expected value of the security. The third environment is also dynamic and follows Ostrovsky
(2012). Agents are myopic and payoffs are determined using market scoring rules, which are
most often used in prediction markets. We say that there is information aggregation if the
price of the security always converges to its true value.

What conditions on the private information of agents lead to no trade and information
aggregation? On one extreme, we say that the security is verifiable if, for each state, there
is some agent who knows its value in the interim stage, when the trade is agreed. This
condition is strong and it implies that there cannot be common knowledge trade. On the
other extreme, the security is collectively verifiable if the conjunction of the knowledge of all
agents reveals its true value. In this case, it is possible that no-one knows the value of the

1Brunnermeier (2001) provides an overview of the literature on asymmetric information and stock market
crashes, whereas Brunnermeier and Pedersen (2005) construct a model of predatory trading with distressed
sellers. Karam and Bogoev (2023) provide an empirical investigation of the connection between low liquidity
and momentum trading.

2Garratt and Monnet (2022) show that oracles are unavoidable, because the truthful reporting about
the realisation of publicly observed events cannot be implemented as a unique equilibrium in a completely
decentralized environment.

3More accurately, they are pseudonymous, because the history of transactions is public and can be linked
to the unique addresses.
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security, when the trade is agreed. We show by example that collective verifiability does not
lead to no trade.

Our main results involve two intermediate properties. We say that the security is maxmin
verifiable if there exists a agent who knows whether the maximum (or minimum) has oc-
curred, among all values of the security that it is common knowledge that are possible. It
is threshold verifiable if there is a threshold x within those values and a agent who knows at
some state whether the security’s value is strictly above or below x. Even though maxmin
verifiability is significantly weaker than verifiability, we show that it is sufficient for no trade.
Our main result, Theorem 1, shows that threshold verifiability is necessary and sufficient for
no common knowledge trade. In a dynamic setting, however, a security that is threshold or
maxmin verifiable at time t, may not be at time t+1. This means that these two properties
are not sufficient for no trade or information aggregation, unless we assume that they hold
at a distant time t∗, when agents have stopped updating their announcements.

1.1 Related literature

Several papers (Morris (1994), Feinberg (2000), Samet (1998), Bonanno and Nehring (1999),
Halpern (2002), Ng (2003)) characterize the existence of a common prior with respect to the
condition that there does not exist a mutually beneficial trade that is common knowledge
at all states. Geanakoplos (1989) showed that trade can still occur with common priors if
agents are boundedly rational and make information processing errors. These results were
extended in an environment with unawareness by Galanis (2013, 2018), Heifetz et al. (2013)
and Meier and Schipper (2014). The current paper differs from this literature because it
imposes conditions on the private information of agents, rather than on priors or bounded
rationality.

Ostrovsky (2012) and Chen et al. (2012) show that in a market with either myopic or
strategic agents, separable securities are both necessary and sufficient for information aggre-
gation. Their models are based on market scoring rules (Hanson (2003, 2007)), hence their
results are directly applicable to prediction markets (Wolfers and Zitzewitz (2004)). Similar
approaches can be found in Dimitrov and Sami (2008), Galanis and Kotronis (2021), Galanis
et al. (2024) and Galanis and Mikhalishchev (2025), where the focus is on examining whether
information gets aggregated under various assumptions regarding preferences and the sig-
nal structure, such as unawareness, ambiguity aversion, and costly information acquisition.
These papers identify classes of securities which ensure that information is aggregated. In the
current model, our results apply to all securities, but the conditions on private information
are imposed at a distant time t∗ where all information updating has concluded.

The advantage of the market scoring rules (MSR) over more well-known market mecha-
nisms, such as the continuous double auction, is that an agent can make her prediction/trade
without waiting for another agent to take the opposite side, or submit a limit order and wait
for it to be filled. This feature makes it an attractive mechanism for markets with relatively
few participants who do not trade daily, or in markets with automated market makers. Au-
tomated market makers (AMMs) are widely used in Decentralized Finance, see Schlegel et al.
(2022) for an axiomatization of the logarithmic MSR. For more on the connection between
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prediction markets and AMMs, see Frongillo and Waggoner (2017), Othman and Sandholm
(2011), Abernethy et al. (2013), and Abernethy and Frongillo (2012).

There is a growing literature on the economics of blockchain and cryptocurrencies. Biais
et al. (2019) provides a game-theoretic analysis of the proof-of-work protocol, which is in
Bitcoin used by the miners, who maintain and update the ledger. Athey et al. (2016) and
Böhme et al. (2015) describe several empirical facts about the usage of Bitcoin, whereas Chen
et al. (2019) examines the desirable properties of the proof-of-work protocol. Easley et al.
(2019) explains the emergence of transaction fees in Bitcoin using a game-theoretic analysis.
Budish (2018) argues that the payments to miners, for maintaining the blockchain, must be
large relative to the one-off benefits of attacking it, thus making the blockchain vulnerable to
attacks once it becomes valuable. Schilling and Uhlig (2019) discusses the monetary policy
implications when cryptocurrencies compete with traditional currencies, backed by a central
bank. Hinzen et al. (2019) argues that the proof-of-work protocol is inherently unable to
sustain a large volume of transactions. The reason is that a rise in transaction demand leads
to an increase in block fees, attracting more miners and exacerbating network latency, thus
delaying payment confirmation and making the payment platform less attractive for users.
Abadi and Brunnermeier (2018) examines when record-keeping is better organised through
a blockchain, instead of a traditional centralised intermediary.

In the current paper we assume that oracles do not act strategically and cannot lie about
their reports, when they verify the value of the security. The issue of eliciting truthful reports
in a strategic environment was first studied by Prelec (2004) (Bayesian Truth Serum) and
Miller et al. (2005) (peer-prediction mechanisms). In general, these mechanisms work by
randomly pairing two agents and paying them according to how close their reports are. See
Jurca and Faltings (2006), Witkowski and Parkes (2012a,b) for various extensions. Goel
et al. (2019) uses the peer-prediction mechanism of Radanovic et al. (2016), in order to
study truthful reporting of oracles in a blockchain.

The paper is organised as follows. Section 2 presents the basic model. Section 3 examines
the three trading environments and presents the results on no trade.

2 Model

Let I be a finite set of n agents. Uncertainty is described by a finite set of states Ω. Agent
i’s private information is represented by partition Πi and prior pi that has full support on
Ω. We do not assume a common prior, so we allow pi ̸= pj for some i, j ∈ I.

Agent i knows event E at ω if Πi(ω) ⊆ E. This means that in all states that he considers
possible at ω, E is true. Define Πi(F ) =

⋃
ω′∈F

Πi(ω
′) to be the set of all states that i thinks

are possible, if the true state is in F . Using this notation, we can say that Πj(Πi(ω)) is
the set of states that, at ω, agent i thinks that j considers possible. If Πj(Πi(ω)) ⊆ F ,
then we say that i knows that j knows F . An event E is common knowledge at ω if
Πin(Πin−1 . . . (Πi1(ω))) ⊆ E, for any sequence of agents i1, . . . , in.

4

4These notions are explained further in Geanakoplos (1992).

5



Let C(ω) be the set of states that are reachable from ω. Formally, C(ω) is the union
of sets Πin(Πin−1 . . . (Πi1(ω))), for any sequence of agents i1, . . . , in. Say that an event E ′ is
self-evident if, whenever it occurs, everyone knows it. Formally, for all ω′ ∈ E ′ and i ∈ I,
we have Πi(ω

′) ⊆ E ′.Then, C(ω) can be described as the smallest self-evident event that
contains ω.5 Aumann (1976) showed that an event E is common knowledge at ω if and only
if C(ω) ⊆ E.

A security is a function X : Ω → R, where X(ω) is the security’s payoff at state ω. Let
X(C(ω)) =

⋃
ω′∈C(ω)

X(ω′) be the collection of all values of security X that can be realised in

states reachable from ω. Intuitively, these are the values of X such that some agent i1 thinks
that i2 thinks that . . . some in considers possible. Alternatively, X(C(ω)) is the smallest set
of the security’s values that it is common knowledge at ω that agents consider possible. Let
maxX(C(ω)) be the maximum and minX(C(ω)) the minimum of these values.

When a state ω occurs, agent i receives private information Πi(ω) and updates his prior

pi. His expectation of X at ω is therefore ei(ω) ≡
∑

ω′∈Πi(ω)

X(ω′) πi(ω
′)

πi(Πi(ω)
. The event “Agent

i’s expectation of X is ei” consists of all states ω such that ei(ω) = ei.

2.1 Verifiability

We introduce four properties on the private information of agents that verify the value of
security X and in the next section we examine their implications for trade. Note that we
allow for different priors. Under a common prior, there would be no trade so verifibability
would not have any implications.

Definition 1. Security X is verifiable if, for each ω ∈ Ω, there exists i ∈ I such that
Πi(ω) ⊆ X−1(k), for some k ∈ R.

Verifiability specifies that, at each state, there exists at least one agent who knows the
true value of the security. This is a strong property that implies no common knowledge
trade. Maxmin verifiability, which is weaker, specifies that among all the values of X that it
is common knowledge that they are possible, there is a agent who knows either the highest
or lowest value of X, when it is true. For example, consider a security which is linked to
the value of a new oil well. The possible values are between zero and some positive number,
depending on how much oil can be extracted. An expert can determine the range of values
by running tests if given access to the well, however if there is no oil at all then she will be
able to verify this. Hence, if the expert is also a agent in the market, maxmin verifiability is
satisfied, because when one extreme value is true, at least one agent knows it.

Another example involves scientists engaged in the development of a breakthrough drug,
either within a pharmaceutical firm or a regulatory authority overseeing its approval. While
the success of the drug remains uncertain, the firm’s valuation is constrained within a certain
range, sustained by ongoing research efforts and investment. However, once the drug is either
demonstrably successful or on the verge of regulatory approval, it becomes apparent that the

5The partition generated by C is called the finest common coarsening of the partitions of all agents.
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firm’s value will approach its maximum. If these scientists are permitted to participate in
trading before the company’s announcement, the condition of maxmin verifiability is fulfilled.

Finally, a catastrophe bond (CAT bond) provides high yields to investors who buy it but
the entire principal is lost if a specific disaster, such as a hurricane, occurs before it matures.
The issuance of CAT bonds is premised on the violation of maxmin verifiability, so that it
is common knowledge that no scientist could predict with probability 1 that a hurricane of
a certain magnitude will occur .6

Definition 2. Security X is maxmin verifiable at ω if there exist i ∈ I and ω′ ∈ C(ω) such
that Πi(ω

′) ⊆ X−1(k), where k ∈ {maxX(C(ω)),minX(C(ω))}.

This is a significant weakening of verifiability because only one value is verified, not all.
Moreover, it is possible that the true value X(ω) is different from both maxX(C(ω)) and
minX(C(ω)). Nevertheless, we show that this property is still strong enough to preclude
common knowledge trade. The following property is weaker than maxmin verifiability.

Definition 3. Security X is threshold verifiable at ω if, whenever X(C(ω)) is not constant,
there exist i ∈ I and ω′, ω′′ ∈ C(ω) such that max

ω0∈Πi(ω′)
X(ω0) < x < min

ω0∈Πi(ω′′)
X(ω0), for some

x ∈ R.

If security X is threshold verifiable, there are two cases. First, X(C(ω)) is constant, so
its unique value is common knowledge at ω. Second, X(C(ω)) is not constant but there
is a threshold x and a agent who knows at some state whether the value of the security is
strictly above or below x. It is important to emphasise that the agent knows whether the
value is above or below the threshold at some state, not at all states. Theorem 1 shows that
threshold verifiability is necessary and sufficient for no common knowledge trade.

Examples for threshold verifiability are similar to the ones for maxmin verifiability, but
the requirements are weaker. A scientist working in a pharmaceutical company knows
whether its value is below or above a threshold, as he has inside information on how well
the new drugs perform in tests. Similarly, an oil expert knows whether the value of the well
will be above or below a threshold, depending on the outcome of the tests she conducts.

The final property specifies that the value of the security is verified only when all agents
share their private information.

Definition 4. Security X is collectively verifiable if, for each ω ∈ Ω,
⋂
i∈I

Πi(ω) ⊆ X−1(k),

for some k ∈ R.

Collective verifiability is the minimum requirement which allows agents to agree a trade
now and reveal their private information at a later date, so that the trade is settled and
payments are made. We show with an example that this property is not strong enough to
preclude common knowledge trade.

6The maturity of CAT bonds is usually between 1 and 5 years. Longer maturities are probably infeasible
as scientists would accurately predict that a catastrophic event will occur with probabiltiy close to 1, hence
maxmin verifiability is satisfied and such bonds would not be traded.
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3 Trading environments

We explore three different trading environments. The first is static, whereas the other two
are dynamic.

3.1 We cannot agree to disagree

We say that there is common knowledge trade at ω if the agents’ expectations about the
value of X are common knowledge at ω, but different. This is interpreted as agreeing to
trade with each other, fully taking into account that the others are also willing to do so. For
example, if ei > ej, then agent i is willing to buy some units of X from j. See Section 3.4,
where we extend trading to a collection of securities {Xi}i∈I with

∑
i∈I

Xi = 0. Recall that

Aumann (1976) shows that common knowledge trade is impossible with a common prior,
however in this setting priors can be different.

Definition 5. There is common knowledge trade at ω if the event “agent i’s expectation of
X is ei, for each i ∈ I” is common knowledge at ω, yet ei ̸= ej for some i, j ∈ I.

The following theorem shows that threshold verifiability is necessary and sufficient to
preclude any common knowledge trade. To prove necessity, we make the additional assump-
tion that the security pays differently across states, so that X(ω) ̸= X(ω′) for all ω, ω′ ∈ Ω.
This precludes the uninteresting case where the intersection of the security’s values that
each agent considers possible across states,

⋂
ω′∈C(ω)

[ min
ω0∈Πi(ω′)

X(ω0), max
ω0∈Πi(ω′)

X(ω0)], is a single-

ton and the same for all agents, so that there is no common knowledge trade for any set of
priors.

Theorem 1. Security X is threshold verifiable at ω if and only if there is no common
knowledge trade at ω, for any set of priors.

Proof. Suppose X is threshold verifiable at ω. If X(C(ω)) is constant, everyone knows the
security’s value and there is no common knowledge trade. If X(C(ω)) is not constant, there
exist i ∈ I and ω′, ω′′ ∈ C(ω) such that max

ω0∈Πi(ω′)
X(ω0) < min

ω0∈Πi(ω′′)
X(ω0). This implies that

for any prior pi, i’s expected value of X at ω′ is different from i’s expected value of X at ω′′.
Because they are different, expected values cannot be common knowledge at ω, hence there
is no common knowledge trade at ω.

Conversely, suppose that X is not threshold verifiable at ω, hence X(C(ω)) is not con-
stant. We will show that there is common knowledge trade at ω for some set of priors. The
negation of threshold verifiability implies that for each i ∈ I we have

⋂
ω′∈C(ω)

[mω′
i ,Mω′

i ] ̸= ∅,

where mω′
i = min

ω0∈Πi(ω′)
X(ω0) is the minimum and Mω′

i = min
ω0∈Πi(ω′)

X(ω0) is the maximum

value of X given i’s partition cell at ω′. We need to show that there is common knowledge
trade at ω for some set of priors {pi}i∈I . For each i ∈ I, pick ki ∈

⋂
ω′∈C(ω)

[mω′
i ,Mω′

i ] ̸= ∅.
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Because X pays differently at each state, so that X(ω′) ̸= X(ω′′) for all ω′, ω′′ ∈ Ω, we
have that

⋂
ω′∈C(ω)

[mω′
i ,Mω′

i ] is not a singleton. This implies that we can choose ki such that

ki ∈ (mω′
i ,Mω′

i ) and we can find i, j ∈ I such that ki ̸= kj.
We interpret ki as i’s expected value of X, which is constant for all ω′ ∈ C(ω). Using

the following procedure, we construct, for each i ∈ I, a prior pi that generates ki as the
expected value of X, given each partition cell Πi(ω

′), ω′ ∈ C(ω). Given ω′ ∈ C(ω), we have
that ki ∈ (mω′

i ,Mω′
i ). This implies that we can find a posterior pω

′
i with full support on

Πi(ω
′), such that Epω

′
i
[X] = ki. This is true for all partition cells within C(ω). Let P i

ω be

the collection of these generated posteriors. By assigning positive weights π(ω′) to posteriors
pω

′
i ∈ P i

ω that add up to 1, we construct the prior pi =
∑

pω
′

i ∈Pi
ω

π(ω′)pω
′

i for agent i. Note that

there are infinitely many such priors. Each ki is constant across all partition cells in C(ω),
hence the expected values of X are common knowledge. Because ki ̸= kj for some i, j ∈ I,
there is common knowledge trade ω.

The theorem specifies that if threshold verifiability fails, then there is common knowledge
trade for some set of priors. However, the proof provides a stronger result, that there is
common knowledge trade for infinitely many sets of priors. To provide some intuition, note
that if threshold verifiability fails at ω, then for each i ∈ I we have

⋂
ω′∈C(ω)

[mω′
i ,Mω′

i ] ̸= ∅,

where mω′
i = min

ω0∈Πi(ω′)
X(ω0) is the minimum and Mω′

i = min
ω0∈Πi(ω′)

X(ω0) is the maximum value

of X given i’s partition cell at ω′. For each i ∈ I, we can pick ki ∈
⋂

ω′∈C(ω)

[mω′
i ,Mω′

i ] ̸= ∅,

which is interpreted as agent i’s expected value of X, constant across all his partition cells. If
ki ̸= kj for at least two agents, then there is common knowledge trade. We can find infinitely
many such vectors {ki}i∈I by choosing different points in the intervals

⋂
ω′∈C(ω)

[mω′
i ,Mω′

i ] ̸=

∅, i ∈ I. Moreover, each such vector {ki}i∈I can be generated by infinitely many sets of
priors, as we describe in the proof.

Note that maxmin verifiability implies no common knowledge trade, as it is stronger
than threshold verifiability. The following example shows that if the security is collectively
verifiable, then there can be common knowledge trade.

Example 1. Let the state space be Ω = {ω1, ω2, ω3, ω4} and consider two agents. Agent 1’s
partition is Π1 = {{ω1, ω2}, {ω3, ω4}}, whereas 2’s partition is Π2 = {{ω1, ω3}, {ω2, ω4}}.
Agent 1’s prior is p1 = {1/6, 1/3, 1/3, 1/6} and agent 2’s is p2 = {1/3, 1/6, 1/6, 1/3}. The
security is X(ω1) = X(ω4) = 1 and X(ω2) = X(ω3) = −1. It is collectively verifiable
because at each state, the agents’ collectively know the value of X. However, at any state ω
it is common knowledge that 1’s expectation of X is −1/3, whereas 2’s expectation is 1/3.
This means that there is common knowledge trade, where 2 buys the security from 1.
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3.2 We cannot disagree forever

We now analyse a dynamic trading environment, based on Geanakoplos and Polemarchakis
(1982). In every period, one agent announces his expected value of the security X. Each
announcement reveals some information to the other agents, who then update their own
posterior beliefs. Geanakoplos and Polemarchakis (1982) show that if the agents share a
common prior, they will eventually agree on their expected value of X. If priors are different,
however, agents may disagree forever.

Formally, there are infinitely many periods t = 0, 1, 2, . . .. At period t = 0 and state
ω, agent i’s partition cell is denoted Π0

i (ω) and the public information created by the
announcement is C0(ω) = Ω. Agents make announcements sequentially. At period t,
agent j announces his expected value of security X, according to his prior pj and parti-
tion cell Πt−1

j (ω) = Π0
j(ω) ∩ Ct−1(ω), which is formulated by his initial private information

Π0
j and the public information Ct−1(ω) that has been revealed by all previous announce-

ments. The public information, created by j’s announcement et at period t, is defined as

Ct(ω) = {ω′ ∈ Ct−1(ω) :
∑

ω′′∈Πt−1
j (ω′)

X(ω′′)
pj(ω

′′)

pj(Π
t−1
j (ω′))

= et}, the set of states which are

consistent with all announcements up to t.
After each announcement, all other agents update their own information, by excluding

any states that would not result in agent j making this announcement. Because the state
space is finite, this process of updating of information will eventually stop. Suppose that
this happens in period t∗. This means that each agent j will make the same announcement
ej at all states in Ct∗(ω).7 If they agree on their announcements, we say that they cannot
disagree forever.

Definition 6. Agents cannot disagree forever at ω if at t∗ we have ei = ej for all i, j ∈ I.

Is threshold verifiability of X at t = 0 and ω, or even maxmin verifiability, sufficient for
no disagreement? We show by example that it is not.

Example 2. Let the state space be Ω = {ω1, ω2, ω3, ω4, ω5} and consider two agents. Agent
1’s partition is Π1 = {{ω1, ω2}, {ω3, ω4}, {ω5}}, whereas 2’s partition is Π2 = {{ω1, ω3}, {ω2, ω4, ω5}}.
Agent 1’s prior is p1 = {1/12, 1/6, 1/6, 1/2, 1/2} and agent 2’s is p2 = {1/6, 1/12, 1/12, 1/6, 1/2}.
The security is X(ω1) = X(ω4) = 1, X(ω2) = X(ω3) = −1 and X(ω5) = 5. The security
is maxmin, and therefore partially, verifiable because at any state ω, C(ω) = Ω and agent 1
knows the maximum value of X at ω5.

From Theorem 1, we know that there is no common knowledge trade at t = 0. However,
it is straightforward to show that there can be disagreement and trade in a dynamic setting.
If the true state is ω ̸= ω5, agent 1 does not announce 5, which informs agent 2 that the
state is not ω5. By excluding state ω5, the partitions and the posteriors are updated so that
the example becomes identical to Example 1. Then, agent 1 announces 1/3 and agent 2
announces -1/3, so that there is no more updating and there is common knowledge trade and
disagreement forever.

7If he was not making the same announcement, then at some t > t∗ the public information Ct∗(ω) would
further shrink, contradicting that the updating of information has stopped.
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Disagreement and trade are possible because maxmin verifiability in period t does not
imply maxmin verifiability at t+ 1. The reason is that even if the maximum (or minimum)
value of X(Ct(ω)) is verified, this may not be true for X(Ct+1(ω)). In Example 2, the
maximum value 5 is verified at t = 0 but at t = 1 neither the maximum 1, nor the minimum
-1, are verified. In contrast, a common prior at t continues to be common at t + 1, as long
as all agents use Bayes’ rule, hence the result of Geanakoplos and Polemarchakis (1982),
that agents cannot disagree forever. In order to preclude trade in our environment, we need
threshold verifiability at period t∗, which is the period after which there is no more updating
of information by anyone. Because at t∗ the announcement of each agent is constant in
Ct∗(ω), threshold verifiability implies that X(Ct∗(ω)) is constant. We therefore have the
following Corollary.

Corollary 1. If at ω and t∗ security X is threshold verifiable, then agents cannot disagree
forever at ω.

3.3 Information aggregation

The question of no trade is closely related to the question of whether a security can aggregate
information, so that the price always converges to its true value. In this section we model
trading using the market scoring rule, which is also used in prediction markets. Trading is
organised as follows. At t = 0, nature selects a state ω ∈ Ω and the uninformed market
maker makes a prediction y0 about the value of security X : Ω → R. At t = 1, agent 1 makes
a revised prediction y1, at t = 2 agent t2 makes his prediction, and so on. At t = n + 1,
agent 1 makes another prediction yn+1. Each prediction yk is required to be within the set
Y = [min

ω∈Ω
X(ω),max

ω∈Ω
X(ω)].

The agents’ payoffs are computed using a scoring rule, s(y, x∗), where x∗ is the true
value of the security and y is a prediction. A scoring rule is proper if, for any probability
measure p and any random variable X, the expectation of s is maximised at y = Ep[X].
It is strictly proper if y is unique. We focus on continuous strictly proper scoring rules.
Examples are the quadratic, where s(y, x) = −(x−y)2, and the logarithmic, where s(y, x) =
(x− a)ln(y− a) + (b− x)ln(b− y) with a < min

ω∈Ω
X(ω), b > max

ω∈Ω
X(ω). A agent’s payoff from

announcing yt at t, is s(yt, x
∗)− s(yt−1, x

∗), where yt−1 is the previous announcement and x∗

is the true value of the security.
We assume that each agent is myopic, so that he cares only about the current payoff,

when making an announcement. Because scoring rules are strictly proper and agents are
myopic, their announcement will always be their expected value of X. Hence, this model is
closely related to the model of the previous section. We say that information gets aggregated
if the agents’ predictions converge to the true value of the security, X(ω).

Definition 7. Information gets aggregated at ω if sequence {yk}∞k=1 converges in probability
to random variable X(ω).

Ostrovsky (2012) and Chen et al. (2012) show that, with common priors, information
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gets aggregated at all states if and only if the security is separable.8 This means that if the
security is not separable, it is possible that agents agree on its expected value, but this is
different from its true value at ω.

In the previous section, we showed that threshold verifiability at t∗ is strong enough to
imply agreement. Moreover, it implies that X(Ct∗(ω)) is constant. Because there is only one
value of X that is possible, it must be the correct one and we have information aggregation.
It is important to note that this result holds for all securities, not just the separable ones.

Corollary 2. If security X is threshold verifiable at t∗ and ω, then there is information
aggregation at ω.

3.4 Multiple securities

In the current model, only one security, X, is traded. In this section, we discuss how trading
can be generalised to multiple securities, {Xi}i∈I , one for each agent, so that

∑
i∈I

Xi = 0. First,

we fix the set of priors and show that common knowledge trade with X implies common
knowledge trade with {Xi}i∈I . Suppose, without loss of generality, that the only common
knowledge event is the whole state space Ω. Then, our definition of common knowledge
trade with X is that each agent i’s expected value given each of his partition cells is ei, yet
ei ̸= ej for at least two agents. If ei > ej, then Agent i is willing to buy the security from
Agent j at some intermediate price ei > p > ej. We can model this trade by having two
new securities, Xi = X − p and Xj = −X + p, where p is the security that pays p at all
states, so we have Xi+Xj = 0. Both agents have strictly positive expected value from their
respective securities, and this trade is feasible because the two securities add up to 0 at all
states.

The two approaches are complementary. We can view X as the ‘fundamental’ asset
which pays according to the state (e.g. the value of the oil well), whereas securities Xi, Xj

denote the actual trade that has been agreed. With n agents, where n is even, we can order
e1 > e2 > . . . > en > 0. By setting p such that en/2 > p > en/2+1, we can define Xi = X − p
for i ≤ n/2 and Xi = −X + p otherwise. We then have common knowledge trade with
multiple securities. The converse is not necessarily true. To see this, suppose that {Xi}i∈I
satisfy common knowledge trade with multiple securities. We can define X =

∑
j∈I

λjXi, so we

need to find λ = {λ1, . . . , λn} such that
∑
j∈I

λjEpi [Xj|Πi(ω)] = ei, for all ω ∈ Ω and i, j ∈ I.

As there are many more equations than unknowns, the system may not have a solution.
We now allow for all possible priors and extend our analysis to multiple securities. We

say that a collection {Xi}i∈I of securities is tradable if they add up to zero at all states,∑
i∈I

Xi = 0, so that the trade is feasible, and every Agent i’s maximum value of Xi given

each of his partition cells is strictly positive. If the last condition was not satisfied for some

8Ostrovsky (2012) characterises this class of separable securities, which includes the Arrow-Debreu secu-
rities.
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partition cell, then the expectation of Xi would be negative for all priors, hence Agent i
would not agree to participate in the trade.

Definition 8. Securities {Xi}i∈I are tradable if
∑
i∈I

Xi = 0 and max
ω0∈Πi(ω)

X(ω0) > 0, for all

i ∈ I and ω ∈ Ω.

We say that there is common knowledge trade given a collection of tradable securities if
it is common knowledge that each Agent i’s expected value of Xi is ei > 0.

Definition 9. There is common knowledge trade at ω (with tradable securities {Xi}i∈I) if
the event “agent i’s expectation of Xi is ei > 0, for all i ∈ I” is common knowledge at ω.

Note that ei in this definition denotes the expected profits of Agent i, whereas ei in the
original definition denotes i’s expected value of X. Samet (1998) uses a weaker definition,
which only requires that the expectations are strictly positive. He shows that there is a
common prior that generates a given collection of posterior beliefs, one for each agent and
his partition cells, if and only if there is no common knowledge trade with multiple securities.

We extend threshold verifiability in a similar way.

Definition 10. Tradable securities {Xi}i∈I are threshold verifiable at ω if, whenever Xi(C(ω))
is not constant for some i ∈ I, there exist i ∈ I and ω′, ω′′ ∈ C(ω) such that max

ω0∈Πi(ω′)
Xi(ω0) <

x < min
ω0∈Πi(ω′′)

Xi(ω0), for some x ∈ R.

We finally have the following Proposition, which is an extension of Theorem 1. The proof
is almost identical so it is omitted.9

Proposition 1. Tradable securities {Xi}i∈I are threshold verifiable at ω if and only if there
is no common knowledge trade at ω, for any set of priors.
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