Staff profile
Overview
Dr Andrew Krause
Associate Professor, Applied Mathematics
Affiliation | Telephone |
---|---|
Associate Professor, Applied Mathematics in the Department of Mathematical Sciences | +44 (0) 191 33 41537 |
Publications
Journal Article
- Krause, A. L., Gaffney, E. A., Jewell, T. J., Klika, V., & Walker, B. J. (2024). Turing Instabilities are Not Enough to Ensure Pattern Formation. Bulletin of Mathematical Biology, 86(2), Article 21. https://doi.org/10.1007/s11538-023-01250-4
- Diez, A., Krause, A. L., Maini, P. K., Gaffney, E. A., & Seirin-Lee, S. (2024). Turing Pattern Formation in Reaction-Cross-Diffusion Systems with a Bilayer Geometry. Bulletin of Mathematical Biology, 86(2), Article 13. https://doi.org/10.1007/s11538-023-01237-1
- Jewell, T. J., Krause, A. L., Maini, P. K., & Gaffney, E. A. (2023). Patterning of nonlocal transport models in biology: The impact of spatial dimension. Mathematical Biosciences, 366, Article 109093. https://doi.org/10.1016/j.mbs.2023.109093
- Walker, B. J., Townsend, A. K., Chudasama, A. K., & Krause, A. L. (2023). VisualPDE: Rapid Interactive Simulations of Partial Differential Equations. Bulletin of Mathematical Biology, 85(11), Article 113. https://doi.org/10.1007/s11538-023-01218-4
- Glover, J. D., Sudderick, Z. R., Shih, B. B.-J., Batho-Samblas, C., Charlton, L., Krause, A. L., Anderson, C., Riddell, J., Balic, A., Li, J., Klika, V., Woolley, T. E., Gaffney, E. A., Corsinotti, A., Anderson, R. A., Johnston, L. J., Brown, S. J., Wang, S., Chen, Y., Crichton, M. L., & Headon, D. J. (2023). The developmental basis of fingerprint pattern formation and variation. Cell, 186(5), 940-956. https://doi.org/10.1016/j.cell.2023.01.015
- Gaffney, E. A., Krause, A. L., Maini, P. K., & Wang, C. (2023). Spatial heterogeneity localizes turing patterns in reaction-cross-diffusion systems. Discrete and Continuous Dynamical Systems - Series B, 28(12), 6092-6125. https://doi.org/10.3934/dcdsb.2023053
- Krause, A. L., Gaffney, E. A., & Walker, B. J. (2023). Concentration-Dependent Domain Evolution in Reaction–Diffusion Systems. Bulletin of Mathematical Biology, 85(14), https://doi.org/10.1007/s11538-022-01115-2
- Sadier, A., Anthwal, N., Krause, A. L., Dessalles, R., Lake, M., Bentolila, L. A., Haase, R., Nieves, N. A., Santana, S. E., & Sears, K. E. (2023). Bat teeth illuminate the diversification of mammalian tooth classes. Nature Communications, 14(1), Article 4687. https://doi.org/10.1038/s41467-023-40158-4
- Sargood, A., Gaffney, E. A., & Krause, A. L. (2022). Fixed and Distributed Gene Expression Time Delays in Reaction-Diffusion Systems. Bulletin of Mathematical Biology, 84(9), Article 98. https://doi.org/10.1007/s11538-022-01052-0
- Ritchie, J. S., Krause, A. L., & Van Gorder, R. A. (2022). Turing and wave instabilities in hyperbolic reaction–diffusion systems: The role of second-order time derivatives and cross-diffusion terms on pattern formation. Annals of Physics, 444, Article 169033. https://doi.org/10.1016/j.aop.2022.169033
- Krause, A. L., Gaffney, E. A., Maini, P. K., & Klika, V. (2021). Modern perspectives on near-equilibrium analysis of Turing systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2213), Article 20200268. https://doi.org/10.1098/rsta.2020.0268
- Krause, A. L., Klika, V., Maini, P. K., Headon, D., & Gaffney, E. A. (2021). Isolating Patterns in Open Reaction–Diffusion Systems. Bulletin of Mathematical Biology, 83(7), https://doi.org/10.1007/s11538-021-00913-4
- Van Gorder, R. A., Kamilova, A., Birkeland, R. G., & Krause, A. L. (2021). Locating the Baking Isotherm in a Søderberg Electrode: Analysis of a Moving Thermistor Model. SIAM Journal on Applied Mathematics, 81(4), https://doi.org/10.1137/20m1314276
- Woolley, T. E., Krause, A. L., & Gaffney, E. A. (2021). Bespoke Turing Systems. Bulletin of Mathematical Biology, 83(5), https://doi.org/10.1007/s11538-021-00870-y
- Krause, A. L., Gaffney, E. A., Maini, P. K., & Klika, V. (2021). Introduction to ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2213), https://doi.org/10.1098/rsta.2020.0280
Supervision students
Luci Mullen
1CAM