Staff profile
Dr Stephen Chivasa
Associate Professor
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Biosciences | +44 (0) 191 33 41275 |
Biography
Research Interests
Cells in multicellular organisms communicate with each other to synchronise their responses to internal and external growth & developmental cues. Cell-to-cell communication is essential in adaptive responses to both biotic and abiotic stress. The Arabidopsis plasma membrane is endowed with numerous receptor-like kinases with a ligand-binding ecto-domain and an intracellular kinase domain. This suggests that cell-cell communications via the apoplastic route could be more widespread than previously thought. The functions of only a handful of these plasma membrane receptors and their cognate ligands have been characterised. We are using proteomics, genomics, and metabolomics to identify genes/proteins/metabolites important in plant stress responses. By focusing on the Extracellular Matrix, we hope to capture signals and signal-regulatory proteins in this sub-cellular compartment with roles in programmed cell death and adaptive responses to drought and pathogen attack. We created an extensive in-house database of plant ECM proteins and we are mining publicly available crop datasets for linking with model plants.
Current projects in the group focus on identifying new genes/proteins in:
1]. Programmed Cell Death
2]. Adaptation to Drought Stress
3]. Pathogen Defence
Publications
Journal Article
- Chivasa, S., & Slabas, A. (online). Plant extracellular ATP signalling: new insight from proteomics. Molecular bioSystems, https://doi.org/10.1039/c1mb05278k
- Chivasa, S., Tome, D., Hamilton, J., & Slabas, A. (online). Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase {beta}-subunit as a novel plant cell death regulator
- Moloi, S. J., Alqarni, A. O., Brown, A. P., Goche, T., Shargie, N. G., Moloi, M. J., Gokul, A., Chivasa, S., & Ngara, R. (2024). Comparative Physiological, Biochemical, and Leaf Proteome Responses of Contrasting Wheat Varieties to Drought Stress. Plants, 13(19), Article 2797. https://doi.org/10.3390/plants13192797
- Ngwenya, S. P., Moloi, S. J., Shargie, N. G., Brown, A. P., Chivasa, S., & Ngara, R. (2024). Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. Plants, 13(13), Article 1874. https://doi.org/10.3390/plants13131874
- Ikebudu, V. C., Nkuna, M., Ndou, N., Ajayi, R. F., Chivasa, S., Cornish, K., & Mulaudzi, T. (2024). Carbon Monoxide Alleviates Salt-Induced Oxidative Damage in Sorghum bicolor by Inducing the Expression of Proline Biosynthesis and Antioxidant Genes. Plants, 13(6), Article 782. https://doi.org/10.3390/plants13060782
- Muthego, D., Moloi, S. J., Brown, A. P., Goche, T., Chivasa, S., & Ngara, R. (2023). Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures. Plant Signaling & Behavior, 18(1), Article 2291618. https://doi.org/10.1080/15592324.2023.2291618
- Gwandu, T., Lukashe, N., Rurinda, J., Stone, W., Chivasa, S., Clarke, C., Nezomba, H., Mtambanengwe, F., Mapfumo, P., Steytler, J. G., & Johnson, K. (2023). Coapplication of water treatment residual and compost for increased phosphorus availability in arable sandy soils. Journal of Sustainable Agriculture and Environment, 2(1), 68-81. https://doi.org/10.1002/sae2.12039
- Gwandu, T., Blake, L., Nezomba, H., Rurinda, J., Chivasa, S., Mtambanengwe, F., & Johnson, K. (2022). Waste to resource: use of water treatment residual for increased maize productivity and micronutrient content. Environmental Geochemistry and Health, 44(10), 3359-3376. https://doi.org/10.1007/s10653-021-01100-z
- Goodman, H. L., Kroon, J. T., Tomé, D. F., Hamilton, J. M., Alqarni, A. O., & Chivasa, S. (2022). Extracellular ATP targets Arabidopsis RIBONUCLEASE 1 to suppress mycotoxin stress-induced cell death. New Phytologist, 235(4), 1531-1542. https://doi.org/10.1111/nph.18211
- Johnson, K. L., Gray, N. D., Stone, W., Kelly, B. F., Fitzsimons, M. F., Clarke, C., Blake, L., Chivasa, S., Mtambanengwe, F., Mapfumo, P., Baker, A., Beckmann, S., Dominelli, L., Neal, A. L., & Gwandu, T. (2022). A nation that rebuilds its soils rebuilds itself- an engineer's perspective. Soil security, 7, Article 100060. https://doi.org/10.1016/j.soisec.2022.100060
- Ngara, R., Goche, T., Swanevelder, D. Z. H., & Chivasa, S. (2021). Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life, 11(7), Article 704. https://doi.org/10.3390/life11070704
- Smith, S. J., Goodman, H., Kroon, J. T., Brown, A. P., Simon, W. J., & Chivasa, S. (2021). Isolation of Arabidopsis extracellular ATP‐binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C‐LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity. The Plant Journal, 106(5), 1387-1400. https://doi.org/10.1111/tpj.15243
- Ngcala, M. G., Goche, T., Brown, A. P., Chivasa, S., & Ngara, R. (2020). Heat Stress Triggers Differential Protein Accumulation in the Extracellular Matrix of Sorghum Cell Suspension Cultures. Proteomes, 8(4), Article 29. https://doi.org/10.3390/proteomes8040029
- Chivasa, S. (2020). Insights into Plant Extracellular ATP Signaling Revealed by the Discovery of an ATP-Regulated Transcription Factor. Plant & Cell Physiology, 61(4), 673-674. https://doi.org/10.1093/pcp/pcaa033
- Chivasa, S., & Goodman, H. L. (2020). Stress‐adaptive gene discovery by exploiting collective decision‐making of decentralised plant response systems. New Phytologist, 225(6), 2307-2313. https://doi.org/10.1111/nph.16273
- Goche, T., Shargie, N. G., Cummins, I., Brown, A. P., Chivasa, S., & Ngara, R. (2020). Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Scientific Reports, 10(1), Article 11835. https://doi.org/10.1038/s41598-020-68735-3
- Abedi, S., Astaraei, F. R., Ghobadian, B., Tavakoli, O., Jalili, H., Chivasa, S., & Chris, G. H. (2019). Bioenergy Production Using Trichormus variabilis - A review. Biofuels, Bioproducts and Biorefining, 13(5), 1365-1382. https://doi.org/10.1002/bbb.2023
- Ramulifho, E., Goche, T., Van As, J., Tsilo, T. J., Chivasa, S., & Ngara, R. (2019). Establishment and Characterization of Callus and Cell Suspension Cultures of Selected Sorghum bicolor (L.) Moench Varieties: A Resource for Gene Discovery in Plant Stress Biology. Agronomy, 9(5), Article 218. https://doi.org/10.3390/agronomy9050218
- Abedi, S., Astaraei, F. R., Ghobadian, B., Tavakoli, O., Jalili, H., Greenwell, H. C., Cummins, I., & Chivasa, S. (2019). Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation. Scientific Reports, 9, Article 2511. https://doi.org/10.1038/s41598-019-38997-7
- Ngara, R., Ramulifho, E., Movahedi, M., Shargie, N. G., Brown, A. P., & Chivasa, S. (2018). Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Scientific Reports, 8(1), Article 8671. https://doi.org/10.1038/s41598-018-27003-1
- González-Torralva, F., Brown, A., & Chivasa, S. (2017). Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance. Scientific Reports, 7, https://doi.org/10.1038/srep42565
- Smith, S. J., Kroon, J. T., Simon, W. J., Slabas, A. R., & Chivasa, S. (2015). A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins. Molecular and Cellular Proteomics, 14(6), 1556-1568. https://doi.org/10.1074/mcp.m114.045054
- Smith, S., Wang, Y., Slabas, A., & Chivasa, S. (2014). Light regulation of cadmium-induced cell death in Arabidopsis. Plant Signaling & Behavior, 8(12), https://doi.org/10.4161/psb.27578
- Wang, Y., Kroon, J., Slabas, A., & Chivasa, S. (2013). Proteomics reveals new insights into the role of light in cadmium response in Arabidopsis cell suspension cultures. Proteomics, 13(7), 1145-1158. https://doi.org/10.1002/pmic.201200321
- Chivasa, S., Tomé, D., & Slabas, A. (2013). UDP-Glucose Pyrophosphorylase Is a Novel Plant Cell Death Regulator. Journal of Proteome Research, 12(4), 1743-1753. https://doi.org/10.1021/pr3010887
- Wang, Y., Slabas, A., & Chivasa, S. (2012). Proteomic analysis of dark response in Arabidopsis cell suspension cultures. Journal of Plant Physiology, 169(17), 1690-1697. https://doi.org/10.1016/j.jplph.2012.06.013
- Chivasa, S., Simon, J., Murphy, A., Lindsey, K., Carr, J., & Slabas, A. (2010). The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome. Proteomics, 10(2), 235-244. https://doi.org/10.1002/pmic.200900454
- Demidchik, V., Shang, Z., Shin, R., Thompson, E., Rubio, L., Laohavisit, A., Mortimer, J., Chivasa, S., Slabas, A., Glover, B., Schachtman, D., Shabala, S., & Davies, J. (2009). Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. The Plant Journal, 58(6), 903-913. https://doi.org/10.1111/j.1365-313x.2009.03830.x
- Chivasa, S., Murphy, A., Hamilton, J., Lindsey, K., Carr, J., & Slabas, A. (2009). Extracellular ATP is a regulator of pathogen defence in plants. The Plant Journal, 60(3), 436-448. https://doi.org/10.1111/j.1365-313x.2009.03968.x
- Chivasa, S., Tomé, D., Murphy, A., Hamilton, J., Lindsey, K., Carr, J., & Slabas, A. (2009). Extracellular ATP: a modulator of cell death and pathogen defense in plants. Plant Signaling & Behavior, 4(11), 1078-1080. https://doi.org/10.4161/psb.4.11.9784
- Chivasa, S., Hamilton, J., Pringle, R., Ndimba, B., Simon, J., Lindsey, K., & Slabas, A. (2006). Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. Journal of Experimental Botany, 57, 1553-1562
- Chivasa, S., Simon, W., Yu, X., Yalpani, N., & Slabas, A. (2005). Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics, 5(18), 4894-4904. https://doi.org/10.1002/pmic.200500047
- Chivasa, S., Ndimba, B., Simon, J., Lindsey, K., & Slabas, A. (2005). Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. The Plant Cell, 17(11), 3019-3034. https://doi.org/10.1105/tpc.105.036806
- Ndimba, B., Chivasa, S., Simon, J., & Slabas, A. (2005). Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 5(16), 4185-4196. https://doi.org/10.1002/pmic.200401282
- Slabas, A., Ndimba, B., Simon, J., & Chivasa, S. (2004). Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochemical Society Transactions, 32, 524-528
- Ndimba, B., Chivasa, S., Hamilton, J., Simon, W., & Slabas, A. (2003). Proteomic analysis of changes in the extracellular matrix ofArabidopsis cell suspension cultures induced by fungal elicitors. Proteomics, 3(6), 1047-1059
- Chivasa, S., Ndimba, B., Simon, J., Robertson, D., Yu, X., Knox, J., Bolwell, P., & Slabas, A. (2002). Proteomic analysis of the Arabidopsis thaliana cell wall. ELECTROPHORESIS, 23(11), 1754-1765
- Chivasa, S., Ekpo, E., & Hicks, R. (2002). New hosts of Turnip Mosaic Virus in Zimbabwe. Plant Pathology, 51(3), 386-386. https://doi.org/10.1046/j.1365-3059.2002.00699.x
- Chivasa, S., Berry, O., ap Rees, T., & Carr, J. (1999). Changes in gene expression during development and thermogenesis in Arum. Australian journal of plant physiology, 26(5), 391-399. https://doi.org/10.1071/pp98154
- Murphy, A., Chivasa, S., Singh, D., & Carr, J. (1999). Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways?. Trends in Plant Science, 4(4), 155-160. https://doi.org/10.1016/s1360-1385%2899%2901390-4
- Chivasa, S., & Carr, J. (1998). Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. The Plant Cell, 10(9), 1489-1498. https://doi.org/10.1105/tpc.10.9.1489
- Chivasa, S., Murphy, A., Naylor, M., & Carr, J. (1997). Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism. The Plant Cell, 9(4), 547-557. https://doi.org/10.1105/tpc.9.4.547