Skip to main content
 

ENGI48415: Turbomachinery and Propulsion

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 4
Credits 15
Availability Available in 2024/2025
Module Cap
Location Durham
Department Engineering

Prerequisites

  • As specified in programme regulations.

Corequisites

  • As specified in programme regulations.

Excluded Combinations of Modules

  • As specified in programme regulations.

Aims

  • This module is designed solely for students studying Department of Engineering degree programmes.
  • To provide an advanced understanding of propulsion cycles and their applications.
  • To provide an advanced understanding of turbomachinery operation and design.

Content

  • Non-dimensional parameters for turbomachinery and their meaning.
  • Axial compressor and turbine analysis and design.
  • The operation of modern turbomachinery design system.
  • Theory of propulsion and the definition of performance parameters.
  • Principles of operation of ramjets.
  • Turbojets, turboprops and turbofans and analysis of those engine types.

Learning Outcomes

Subject-specific Knowledge:

  • An understanding of the principles and controlling parameters of aircraft propulsion.
  • An understanding of fluid flow behaviour and analysis in the specialised application of flow over turbine and compressor blading and an appreciation of the parameters affecting turbomachinery aero-thermal performance.

Subject-specific Skills:

  • An awareness of current technology, analysis methods and industrial practises along with the ability to apply those methods in novel situations.
  • An in-depth knowledge and understanding of specialised and advanced technical and professional skills, an ability to perform critical assessment and review and an ability to communicate the results of their own work effectively.
  • To use effectively specialised, advanced models for the analysis of fluid flows.
  • The ability to carry out the design and analysis of axial flow compressors and turbines.

Key Skills:

  • Capacity for independent self-learning within the bounds of professional practice.
  • Specialised numerical skills appropriate to an engineer.
  • Mathematics relevant to the application of advanced engineering concepts.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • The module content is delivered in lectures and is reinforced by problem sheets and exercises, equipping students with the required problem solving capability.
  • Students are able to make use of staff 'Tutorial Hours' to discuss any aspect of the module with teaching staff on a one-to-one basis. These are sign up sessions available for up to one hour per week per lecture course.
  • Coursework is appropriate because it allows students to work on realistic engineering problems.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures20Typically 1 per week 1 hour20 
Tutorial HoursAs requiredWeekly sign up sessions Up to 1 hour12 
Coursework preparation 50Yes
Preparation and reading68 
Total 150 

Summative Assessment

Component: Coursework Component Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Coursework 100Yes

Formative Assessment

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.