Skip to main content
 

GEOL50315: Data Analysis in Space and Time

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 5
Credits 15
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Earth Sciences

Prerequisites

  • None

Corequisites

  • None

Excluded Combinations of Modules

  • None

Aims

  • To provide students with an understanding of data methods and tools used in the Earth and Environmental Sciences, with a particular focus on those used for analysing spatial and temporal datasets
  • To provide experience of physical modelling of complex real-world systems
  • To provide knowledge of, and the ability to apply, popular software packages currently used in industry settings.

Content

  • Spatial information systems
  • Geostatistics
  • Geographical Information Systems software
  • Numerical analysis
  • Inverse theory
  • Time series analysis
  • General and generalised linear models

Learning Outcomes

Subject-specific Knowledge:

  • By the end of this module, students should:
  • Understand the systems for recording spatial data
  • Understand how to solve forward and inverse physical models
  • Develop statistical models of environmental data
  • Appreciate the main Python and R packages for analysis of Earth and Environmental data and understand how to use them.

Subject-specific Skills:

  • By the end of this module, students should:
  • Be able to convert data between coordinate systems
  • Be able to analyse time series data in both the time and frequency domains
  • Be able to construct predictive time series models
  • Be able to solve or invert physical models
  • Be able to develop general and generalised linear models of continuous and discrete data
  • Be able to use standard software packages to develop models and solve problems

Key Skills:

  • Effective written communication
  • Planning, organising and time-management
  • Problem solving and analysis

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Learning outputs are met through classroom-based workshops, supported by online resources. The workshops consist of a combination of taught input, case studies, discussion and computing labs. Online resources will typically consist of directed reading and a programming environment with example code.
  • The summative assessment will be based upon a series of data modelling exercises to demonstrate knowledge of techniques taught.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures82 times per week (Term 1, weeks 6-9)1 hour8 
Workshops82 times per week (Term 1, weeks 6-9)2 hours16 
Surgery123 times per week (Term 1, weeks 6-9)1 hour12 
Preparation and reading114 
Total150 

Summative Assessment

Component: AssignmentComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Individual written assignment based on data problem2000 words maximum100 

Formative Assessment

The formative assessment consists of classroom-based exercises on specific data topics of relevance to the learning outcomes of the modules. Oral feedback will be given on a group and/or individual basis as appropriate.

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.