Skip to main content
 

MATH41620: Number Theory

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 4
Credits 20
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Mathematical Sciences

Prerequisites

  • Prior knowledge of Algebra at undergraduate level.

Corequisites

  • None

Excluded Combinations of Modules

  • None

Aims

  • To provide an introduction to Algebraic Number Theory (Diophantine Equations and Ideal Theory).

Content

  • Diophantine equations using elementary methods.
  • Unique factorization.
  • Ideals.
  • Euclidean rings.
  • Number fields.
  • Algebraic integers.
  • Quadratic fields and integers.
  • The discriminant and integral bases.
  • Factorization of ideals.
  • The ideal class group.
  • Dirichlet's Unit Theorem.
  • L-functions.
  • Class number formula for quadratic fields.
  • Reading material on a topic related to one of the above areas.

Learning Outcomes

Subject-specific Knowledge:

  • By the end of the module students will: be able to solve novel and/or complex problems in Number Theory.
  • have a systematic and coherent understanding of theoretical mathematics in the field of Number Theory.
  • have acquired a coherent body of knowledge of these subjects demonstrated through one or more of the following topic areas:
  • Euclidean rings, principal ideal domains, uniqueness of factorization.
  • Algebraic number fields (especially Quadratic fields).
  • Applications to Diophantine equations.
  • Student will also have a knowledge and understanding of a topic related to the areas listed under content.

Subject-specific Skills:

  • In addition students will have specialised mathematical skills in the following areas which can be used with minimal guidance: Abstract reasoning.
  • Students will have an ability to read independently to acquire knowledge and understanding in related areas.

Key Skills:

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Subject material assigned for independent study develops the ability to acquire knowledge and understanding in related areas.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures422 per week for 20 weeks and 2 in term 31 Hour42 
Problems Classes8Four in each of terms 1 and 21 Hour 8 
Preperation and Reading150 
Total200 

Summative Assessment

Component: ExaminationComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Written examination3 Hours100 

Formative Assessment

Eight written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.