Skip to main content
 

MATH42320: Statistical Mechanics

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 4
Credits 20
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Mathematical Sciences

Prerequisites

  • Analysis in Many Variables.

Corequisites

  • None

Excluded Combinations of Modules

  • None

Aims

  • To develop a basic understanding of the dynamics and behaviour of systems with a large number of constituents.
  • To develop approximation techniques and calculational methods to understand collective dynamics of large particle ensembles.

Content

  • Thermal equilibrium, laws of thermodynamics, equations of state, ideal gas law.
  • Probability distributions and random walks.
  • Classical statistical mechanics.
  • Distributions and identical particles.
  • Black-body radiation, magnetisation, neutron stars.
  • Phase transitions.
  • Reading material on one or more aspects of the Renormalization Group.

Learning Outcomes

Subject-specific Knowledge:

  • The students will: learn to deal with systems where statistical ideas give a good picture of the essential dynamics.
  • have learnt to develop approximation methods necessary to solve problems involving large systems.
  • have mastered knowledge of the subject through one or more of the following subject areas: thermodynamics, probability distributions, statistical ensembles, phase transitions.
  • have a knowledge and understanding of a topic in the renormalization group approach.

Subject-specific Skills:

  • The students will have specialised knowledge and mathematical skills in tackling problems in: statistical modeling of large systems.
  • Ability to read independently to acquire knowledge and understanding of aspects of the Renormalization Group approach.

Key Skills:

  • The students will have an appreciation of Statistical Mechanics and its utility in the real world in the study of various complex systems and solutions thereof.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Subject material assigned for independent study develops the ability to acquire knowledge and understanding without dependence on lectures.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures422 per week for 20 weeks and 2 in term 31 Hour42 
Problems Classes8four in each of terms 1 and 21 Hour8 
Preparation and Reading150 
Total200 

Summative Assessment

Component: ExaminationComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Written examination3 hours100 

Formative Assessment

Eight written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.