Skip to main content
 

PHIL42415: Ethics and Bias in Data Science

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 4
Credits 15
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Philosophy

Prerequisites

  • None

Corequisites

  • None

Excluded Combinations of Modules

  • None

Aims

  • To introduce students to contemporary debates on ethical issues and bias resulting from the increasingly widespread application of data analytics, statistical modelling and artificial intelligence in society.
  • To introduce students to cutting edge philosophical research on these issues and to examine how to apply this research into practice.
  • To provide students with tools that will enable them to apply ethical theories and frameworks to practical problems in Date Science.
  • To provide procedures and build expertise for examining, identifying and rectifying the sources of bias that can lead a statistical model to produce inaccurate or unjust results.
  • To provide students with the knowledge and skills required to research and write about a specific ethical topic under the guidance of members of staff.

Content

  • Topics will vary depending on staff expertise. A list of indicative topics is as follows:
  • Accountability and transparency in AI.
  • Creating trustworthy algorithms.
  • Social media and the fracturing of civil society.
  • Algorithmic bias
  • Unconscious bias
  • Gender bias in language modelling.
  • Racial bias in facial recognition.
  • The use of private medical data for public health purposes.
  • Ethical problems with algorithmic approaches to policing, sentencing and probation.
  • Data manipulation and collective action.

Learning Outcomes

Subject-specific Knowledge:

  • Students will be able to:
  • Understand the requirements for building ethically robust statistical models.
  • Understand the main ethical challenges arising from the use of private data in the public and commercial sphere.
  • Understand the societal biases that can affect a statistical model when the algorithms and training data are skewed by prejudice.
  • Apply ethical thinking and studies to real-life cases and examples in Data Science. Understand the background issues that shape the debate and influence current discussion in the field.
  • Be able to draw parallels between different kinds of cases and examples by means of conceptual analysis and philosophical theory.

Subject-specific Skills:

  • Students will be able to:
  • Identify key issues, questions and debates regarding the ethics of AI.
  • Draw analogies between these issues, questions and debates.
  • Identify and make use of relevant literature.
  • Identify a philosophical problem, formulate a philosophical position and employ critical skills to address the problem.
  • Write an essay which answers a question in an appropriately focused manner, with a clear and concise discussion of the topic area and a structured argument.

Key Skills:

  • Students will be able to:
  • Identify and locate research materials.
  • Write in a clear and rigorous style.
  • Manage their time efficiently.
  • Pursue interdisciplinary research.
  • Make a responsible decision about their chosen essay topic.
  • Think clearly and independently about the intersection of data science and society.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • This module will be delivered by the Department of Philosophy with input from Computer Science.
  • Most of the teaching will take the form of linked lectures and seminars. Each lecture will last one hour and will be followed by a one-hour seminar, in which there will be a discussion that follows on from the subject of the lecture. In the seminars, we will address questions that are central to the ethics & bias of AI and data analytics and apply ethical thinking to real life cases. Students will have the opportunity to ask questions and debate the topics outlined in the lecture, and will be encouraged to develop their own opinions and defend their own points of view with the help of philosophical concepts and distinctions. They will be guided through the material and have a chance to develop both their analytic and argumentative skills.
  • The tutorials will enable smaller groups of students to target a specific research area (based on the essay topic they have chosen) and participate in in-depth discussions of this particular topic weekly. They will have a chance to examine the wider ramifications of the research areas and reflect on their practical relevance in Data Science. These tutorials will also enable students to work on their writing techniques and analysis, receiving individual guidance where appropriate. The groups will work towards a session focusing on specific applications of the theories they have studied. They will defend their arguments by responding to questions. This will help students to develop their skills for collaborative ethical decision making.
  • All lectures will be recorded in line with the Universitys Lecture Capture Policy and will be available for the duration of the programme.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures4Term 1 Weeks 12, 14, 17,191 hour4 
Seminars4Term 1 Weeks 13, 15, 18,201 hour4Yes
Tutorials4Term 1 Weeks 12, 14, 17,191 hour4Yes
Preparation and Reading138 
Total150 

Summative Assessment

Component: EssayComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Essay3000 words100 

Formative Assessment

A draft essay of 2000 words.

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.