Skip to main content
 

ENGI4437: Turbomachinery and Propulsion 4

Please ensure you check the module availability box for each module outline, as not all modules will run in each academic year. Each module description relates to the year indicated in the module availability box, and this may change from year to year, due to, for example: changing staff expertise, disciplinary developments, the requirements of external bodies and partners, and student feedback. Current modules are subject to change in light of the ongoing disruption caused by Covid-19.

Type Tied
Level 4
Credits 10
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Engineering

Prerequisites

  • ENGI3291

Corequisites

  • As specified in programme regulations.

Excluded Combinations of Modules

  • As specified in programme regulations.

Aims

  • This module is designed solely for students studying Department of Engineering degree programmes.
  • To provide an advanced understanding of propulsion cycles and their applications.
  • To provide an advanced understanding of turbomachinery operation and design.

Content

  • Non-dimensional parameters for turbomachinery and their meaning.
  • Axial compressor and turbine analysis and design.
  • The operation of modern turbomachinery design system.
  • Theory of propulsion and the definition of performance parameters.
  • Principles of operation of ramjets.
  • Turbojets, turboprops and turbofans and analysis of those engine types.

Learning Outcomes

Subject-specific Knowledge:

  • An understanding of the principles and controlling parameters of aircraft propulsion.
  • An understanding of fluid flow behaviour and analysis in the specialised application of flow over turbine and compressor blading and an appreciation of the parameters affecting turbomachinery aero-thermal performance.

Subject-specific Skills:

  • An awareness of current technology, analysis methods and industrial practises along with the ability to apply those methods in novel situations.
  • An in-depth knowledge and understanding of specialised and advanced technical and professional skills, an ability to perform critical assessment and review and an ability to communicate the results of their own work effectively.
  • To use effectively specialised, advanced models for the analysis of fluid flows.
  • The ability to carry out the design and analysis of axial flow compressors and turbines.

Key Skills:

  • Capacity for independent self-learning within the bounds of professional practice.
  • Specialised numerical skills appropriate to an engineer.
  • Mathematics relevant to the application of advanced engineering concepts.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • The module content is delivered in lectures and is reinforced by problem sheets and exercises, equipping students with the required problem solving capability.
  • Students are able to make use of staff 'Tutorial Hours' to discuss any aspect of the module with teaching staff on a one-to-one basis. These are sign up sessions available for up to one hour per week per lecture course.
  • Coursework is appropriate because it allows students to work on realistic engineering problems.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures20Typically 1 per week1 Hour20 
Tutorial HoursAs requiredWeekly sign-up sessionsUp to 1 Hour10 
Preparation and Reading70 
Total100 

Summative Assessment

Component: CourseworkComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Assignment 100No

Formative Assessment

N/A

More information

If you have a question about Durham's modular degree programmes, please visit our FAQ webpages, Help page or our glossary of terms. If you have a question about modular programmes that is not covered by the FAQ, or a query about the on-line Undergraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.