Skip to main content
 

MATH30720: Dynamical Systems

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 3
Credits 20
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Mathematical Sciences

Prerequisites

  • Complex Analysis and Analysis in Many Variables.

Corequisites

  • None

Excluded Combinations of Modules

  • None

Aims

  • To provide an introduction to modern analytical methods for nonlinear ordinary differential equations in real variables.

Content

  • Smooth ODEs: existence and uniqueness of solutions.
  • Autonomous ODEs: orbits, equilibrium and periodic solutions.
  • Linearisation: Hartman-Grobman, stable-manifold theorems, phase portraits for non-linear systems, stability of equilibrium.
  • Flow, Fixed points: Brouwer's Theorem, periodic solutions, Poincare-Bendixson and related theorems, orbital stability.
  • Hopf and other local bifurcations from equilibrium, bifurcations from periodic solutions.

Learning Outcomes

Subject-specific Knowledge:

  • By the end of the module students will: be able to solve novel and/or complex problems in Dynamical Systems.
  • have a systematic and coherent understanding of theoretical mathematics in the field of Dynamical Systems.
  • have acquired a coherent body of knowledge of these subjects demonstrated through one or more of the following topic areas: (mostly second-order) non-linear ODE's applied to the following:
  • a smooth finite dimensional dynamical system as a direction field on a manifold.
  • critical points and cycles as attractors, and their interaction via local bifurcations of co-dimension one.
  • Local linearization, Lyapunov functions, the Poincare and Bendixson theorems of plane topology, and the Hopf bifurcation theorem.

Subject-specific Skills:

  • In addition students will have specialised mathematical skills in the following areas which can be used with minimal guidance: Modelling.

Key Skills:

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures422 per week for 20 weeks and 2 in term 31 Hour42 
Problems Classes8four in each of terms 1 and 21 Hour8 
Preparation and Reading150 
Total200 

Summative Assessment

Component: ExaminationComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Written examination3 hours100 

Formative Assessment

Eight written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.