Skip to main content
 

MATH31620: Fluid Mechanics

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 3
Credits 20
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Mathematical Sciences

Prerequisites

  • Problem Solving and Dynamics and Analysis in Many Variables.

Corequisites

  • None

Excluded Combinations of Modules

  • None

Aims

  • To introduce a mathematical description of fluid flow and other continuous media to familiarise students with the successful applications of mathematics in this area.
  • to prepare students for future study of advanced topics.

Content

  • Kinematic description of fluid flows: streamlines and trajectories, mass conservation and continuity equation
  • Review of tensors, stress and rate of strain.
  • Dynamical models of fluid flows: Euler and Navier-Stokes equation.
  • Some methods to solve Euler and Navier-Stokes equations.
  • Waves: sound and water waves, linear and nonlinear.
  • Topics from: thermodynamics, scaling and dimensional analysis, hydrodynamic stability, NSE and turbulence, non-Newtonian fluid flows.
  • Reading material on a topic related to: hydrodynamic stability, turbulence.

Learning Outcomes

Subject-specific Knowledge:

  • By the end of the module students will: be able to solve complex, unpredictable and specialised problems in Continuum Mechanics.
  • have an understanding of specialised and complex theoretical mathematics in the field of Continuum Mechanics.
  • have mastered a coherent body of knowledge of these subjects demonstrated through one or more of the following topic areas: Kinematics of fluid flows.
  • Equations of motion and their derivation for fluids.
  • have an advanced understanding in one of the following areas: hydrodynamic stability, turbulence.

Subject-specific Skills:

  • In addition students will have highly specialised and advanced mathematical skills in the following areas: Modelling.
  • They will be able to formulate and use mathematical models in various situations.

Key Skills:

  • Students will be able to study independently to further their knowledge of an advanced topic.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve complex and specialised problems.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures422 per week for 20 weeks and 2 in term 31 Hour42 
Problems Classes8four in each of terms 1 and 21 Hour8 
Preparation and Reading150 
Total200 

Summative Assessment

Component: ExaminationComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Written examination3 hours100 

Formative Assessment

Eight written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.